on the toilet
episode #17/

Testing time dependent feature

Imagine that you want to test o feature where passing time plays the key role. Let it be a
transaction that must be committed before timeout. To get current time you would probably
use time.Now() which returns an instance of time.Time. The problem is that invoking
time.Now() in your code makes it impossible to test. Each time you invoke go test, you'll
receive a different time.

It would be desirable to be able to time travel in tests. Set some time at the beginning,
advance the clock, and assert a condition. One way to do it is to assign time.Now to a variable.

// production code // test code
var timeNow = time.Now func TestFunction(t *testing.T) {
curr := time.Date(2012, 1, 1, 12, 90, 9, 9, time.Local)
func function() { timeNow = func() time.Time { return curr }
fmt.Println(timeNow()) defer func() { timeNow = time.Now }()
} function() // printed time will be always January 1st 2012
}

Production code doesn't use time.Now directly, but rather timeNow alias. In tests we can switch
timeNow with any time we want. There are downsides to this approach:

1. timeNow behavior must be reverted after test execution (deferred in example)

2. because timeNow is global multiple tests using it cannot run concurrently

We can do better:

// production code // test code
type Clock interface { type fakeClock struct { curr time.Time}
Now() time.Time func (fc *fakeClock) Now() time.Time {
} return fc.curr
}

type realClock struct {}
func (realClock) Now() time.Time {

return time.Now() func TestFunction(t *testing.T) {
} curr := time.Date(2012, 1, 1, 12, 9, 9, O, time.Local)
clock := &fakeClock{curr:curr}
func function(clock Clock) { function(clock)
fmt.Println(clock.Now()) }

}

Now the time provider is injected. We do not rely on a global variable anymore. Thanks to the
fact that type injected into the function is Clock which is an interface we can satisfy this
dependency in tests with any type that implements Now() method.

. . . €
Bathroom magazine with golang trivio, examples and patterns &3
Inspired by original Google's “Testing on the Toilet” ._/_____'_‘:_.’ z

Browse previous episodes: https://github.com/jedruniu/gott


https://github.com/jedruniu/goot

