
on the toilet
episode #15

Looping over channel
Operator range supports not only iterating over arrays, slices and maps but also over
channels. Let's find out how it works under the hood.

func main() {
 source := make(chan int)
 go func() {
 for i := 0; i < 5; i++ {
 source <- i // Produce values from 0 to 4.
 }
 close(source) // Necessary for range to work.
 }()

 for v := range source { // Range over all values from source.
 fmt.Println(v)
 }
}

Ranging over channel is merely syntactic sugar. In order to understand how this works
underneath, one need to realize that channel receive operator (<-chan) when used in
assignment yields two values:

v, ok := channel

First is value received from the channel itself. Second informs whether communication
succeeded. This means that for not closed channel (values still to be received) ok will be true,
and for closed channel it will be false. This is why closing a channel at the producer end is so
important. Without it consumer doesn't know when to stop to receive from the channel.

for { // Known as "while true" in other languages.
 v, ok := <-source
 if !ok { // If there is no more values just stop.
 break
 }
 fmt.Println(v, ok)
}

As you can see looping is just receiving value after value and checking whether channel is
closed or not. However range keyword is shorter, more verbose and preferable.

Bathroom magazine with golang trivia, examples and patterns
Inspired by original Google’s “Testing on the Toilet”
Browse previous episodes: https://github.com/jedruniu/gott

https://github.com/jedruniu/goot

