
on the toilet
episode #15

Looping over channel
Operator ​range ​supports not only iterating over arrays, slices and maps but also over
channels. Let's find out how it works under the hood.

func main() {
 source := make(chan int)
 go func() {
 for i := 0; i < 5; i++ {
 source <- i ​// Produce values from 0 to 4.
 }
 close(source) ​// Necessary for range to work.
 }()

 for v := range source { ​// Range over all values from source.
 fmt.Println(v)
 }
}

Ranging over channel is merely syntactic sugar. In order to understand how this works
underneath, one need to realize that channel receive operator (​<-chan​) when used in
assignment yields two values:

v, ok := channel

First is value received from the channel itself. Second informs whether communication
succeeded. This means that for not closed channel (values still to be received) ​ok will be ​true​,
and for closed channel it will be ​false​. This is why closing a channel at the producer end is so
important. Without it consumer doesn't know when to stop to receive from the channel.

for { ​// Known as "while true" in other languages.
 v, ok := <-source
 if !ok { ​// If there is no more values just stop.
 break
 }
 fmt.Println(v, ok)
}

As you can see looping is just receiving value after value and checking whether channel is
closed or not. However ​range​ keyword is shorter, more verbose and preferable.

Bathroom magazine with golang trivia, examples and patterns
Inspired by original Google’s “Testing on the Toilet”
Browse previous episodes: ​https://github.com/jedruniu/gott

https://github.com/jedruniu/goot

