on the toilet
episode #14

Handling OS signals

func main() {
sigs := make(chan os.Signal, 1)
exit := make(chan struct{})
signal.Notify(sigs, syscall.SIGTERM, syscall.SIGHUP)

go func() {
for {

switch <-sigs {
case syscall.SIGTERM:
fmt.Println("\rcleaning up and exiting")
cleanup()
exit <- struct{}{}
case syscall.SIGHUP:
fmt.Println("\rreloading configuration")

reload()
}
}
HO)
// something useful going on here
<-exit

Fundamental building block of signal handling is Notify function in the signal package. It
accepts channel of os.signal, and signals which will be relayed to that channel. What we do
here is we listen to SIGTERM and SIGHUP signals. SIGTERM is a termination signal sent by kill
command by default. SIGHUP is the hang up signal which in the early days (according to
wikipedia) was used to inform the process that connection on the serial line with terminal on
the other end was dropped. These days long running applications (aka daemons) like nginx or
docker use it to tell the process "reload your config".

We don't listen to other signals here. For example sending SIGINT (ctrl+c) to the process will
not be caught by our code and will be handled in the usual way.

Note that sigs channel has single element buffer. According to the documentation you can
have any buffer size you want. Only limitation is that if the rate of incoming signals is higher
than buffer size you might lose some signals. Example here would be that if reload() taokes 3
seconds, and process will receive immediately SIGHUP, SIGHUP ond SIGTERM signals,
termination signal might get lost.

Last but not least, catching signals is happening in a different goroutine because we don't
want to block anything useful (for example, running in a foreground HTTP service).

Bathroom magazine with golang trivio, examples and patterns
Inspired by original Google's “Testing on the Toilet” /_____""___:'

Browse previous episodes: https://github.com/jedruniu/gott



https://github.com/jedruniu/goot

