on the toilet
episode #12

Select is not only SQL thing

The select statement in go gives the ability to listen on many channels at the same time. Let's
have a look.

func main() {
ch := make(chan int)
ch2 := make(chan int)
go func() { ch <- 1 }() // sending on separate goroutine to avoid deadlock

select {
case v := <-ch:

fmt.Printf("received %d on channel 1", v)
case v := <-ch2:

fmt.Printf("received %d on channel 2", v)

}

This piece of code executes only the first case statement because only the first channel has
something that can be received. In scenarios where at the execution time, select statement
receives values on multiple channels simultaneously, the case statement will be selected
randomly. The example above may not look complex, neither impressive, so let's have a look at
something more useful. The select enables us to build a simple timeout mechanism.

func main() {
ch := make(chan int)
go func() {
time.Sleep(5 * time.Second)
ch <- 1

30O

select {
case v := <-ch:
fmt.Printf("received %d on channel”, v)
case <-time.After(1l * time.Second):
fmt.Printf("timed out")

}

In order to understand this example you need to know that time.After returns o channel,
which yields after time specified in the parameter. Since we send to the channel ch ofter 5
seconds, first case will never execute, because after 1 second, second case will run.

Bathroom magazine with golang trivio, examples and patterns
Inspired by original Google's “Testing on the Toilet” —-f_’_..—-—-*”

Browse previous episodes: https://github.com/jedruniu/goot



https://github.com/jedruniu/goot

