
on the toilet
episode #12

Select is not only SQL thing

The ​select statement in go gives the ability to listen on many channels at the same time. Let's
have a look.

func main() {
 ch := make(chan int)
 ch2 := make(chan int)
 go func() { ch <- 1 }() ​// sending on separate goroutine to avoid deadlock

 select {
 case v := <-ch:
 fmt.Printf("received %d on channel 1", v)
 case v := <-ch2:
 fmt.Printf("received %d on channel 2", v)
 }
}

This piece of code executes only the first ​case statement because only the first channel has
something that can be received. In scenarios where at the execution time, ​select statement
receives values on multiple channels simultaneously, the ​case statement will be selected
randomly. The example above may not look complex, neither impressive, so let's have a look at
something more useful. The ​select​ enables us to build a simple timeout mechanism.

func main() {
 ch := make(chan int)
 go func() {
 time.Sleep(5 * time.Second)
 ch <- 1
 }()

 select {
 case v := <-ch:
 fmt.Printf("received %d on channel", v)
 case <-time.After(1 * time.Second):
 fmt.Printf("timed out")
 }
}

In order to understand this example you need to know that ​time.After returns a channel,
which yields after time specified in the parameter. Since we send to the channel ​ch after 5
seconds, first case will never execute, because after 1 second, second case will run.

Bathroom magazine with golang trivia, examples and patterns
Inspired by original Google’s “Testing on the Toilet”
Browse previous episodes: ​https://github.com/jedruniu/goot

https://github.com/jedruniu/goot

