
on the toilet
episode #11

Concurrency is not parallelism​ ​left side

① I hope you've started reading right here. This is the beginning of this episode. Let's get
started with acknowledgment that both parallelism and concurrency deal with the same
domain of doing many things "at the same time". ​→②

③ This is concurrent work in action. You are reading two things at the same time, but you can
be focused only on one of them at the time. This shows that a computer with a single CPU is
able to perform concurrent tasks. Concurrency is really about how your program is
structured. If a human being would be able to read one page with one eye, and the second
with the other we would have parallel computing. Similarly, it is easy to add parallelism to the
program that is written concurrently by using more processors. ​→④

⑤
func main() {
 files, _ := ioutil.ReadDir(".")

 thumbnailsToUpload := make(chan string)
 uploadDone := make(chan bool)
 go upload(thumbnailsToUpload, uploadDone)

 wg := sync.WaitGroup{}
 for _, file := range files {
 if strings.HasSuffix(file.Name(), ".png") {
 wg.Add(1)
 go thumbnail(file.Name(), thumbnailsToUpload, &wg)
 }
 }
 // Wait for all thumbnail jobs to finish.
 wg.Wait()
 // Close toUpload channel so that upload goroutine will
 // know when to stop iterating over toUpload channel.
 close(toUpload)
 ​ // Wait for uploadDone channel so receive so that program
 // will now finish before launching all uploads.
 <-uploadDone
}

Let's see how ​thumbnail​ ​and ​upload​ ​are defined. ​→⑥

⑦ This short program leverages go asynchronous model. It uses goroutines in order to make
it faster. ​→⑧

Bathroom magazine with golang trivia, examples and patterns
Inspired by original Google’s “Testing on the Toilet”
Browse previous episodes: ​https://github.com/jedruniu/goot

https://github.com/jedruniu/goot

on the toilet
episode #11

Concurrency is not parallelism​ ​right side

② Did you see what just happened? You've just switched a context. You've just started working
on different task of reading an article to the right site. ​③←

④ Let's think of an example of concurrent work to do that is small enough that will fit on one
episode, yet realistic enough that you can relate to it. How about a thumbnailer? The idea will
be to have a program that makes a thumbnail for every png file in given directory and
uploads them somewhere. ​⑤←

⑥
func thumbnail(path string, thumbnails chan<- string, wg *sync.WaitGroup) {
 defer wg.Done()

 // .. magic that generates smaller version of an image under `path`.
 thumbnailPath := resizeImg(path)

 thumbnails <- thumbnailPath
}

Resizing an image is a CPU-bound task.

func upload(paths <-chan string, done chan<- bool) {
 for path := range paths {
 go uploadSingle(path)
 }
 done <- true
}

This one is IO-bound, it has make a remote call. ​⑦←

⑧ What is worth noting here is that this program can be run on a single core (by setting
environment variable ​GOMAXPROCS=1​) and we can still save time on executing upload goroutines
because inside this goroutine we don't wait for the result of upload operation to finish (which
is naive, but that's not the point).

Starting from Go 1.5 Release ​GOMAXPROCS ​environment variable defaults to the amount of CPU
cores on the machine. If we have multi-core machine (which we probably have) and if we do
not change the value of ​GOMAXPROCS​, ​thumbnail function will also gain performance because
the CPU will be able to do calculations exactly at the same time for many goroutines.

Bathroom magazine with golang trivia, examples and patterns
Inspired by original Google’s “Testing on the Toilet”
Browse previous episodes: ​https://github.com/jedruniu/goot

https://github.com/jedruniu/goot

