
on the toilet
episode #10

Do not communicate by sharing memory; instead, share memory by
communicating
This is one of golang's proverbs. Impact of this sentence is bigger than you might think. What
does it even mean? It has a meaning only in a concurrent program where separate goroutines
want to share information between each other.

Communication by sharing memory means that many goroutines share access to a data
structure (which needs a lock protection). This isn't so bad, right? We are used to it, we do this
kind of sharing all the time. It turns out we can do better. We can share memory by
communicating. "Why is it better?" you may ask. If you'll think why you need a lock to protect a
variable in the first place - the answer is - because it can get changed from many goroutines
concurrently. This is where you might end up with data race.
If a variable is used only in one goroutine there is no possibility to have data races at all
because single variable is changed in single goroutine. This is simple, yet powerful insight.

How do we communicate then? With channels!
Let's have a look at example! Channels are created by
calling make function with chan keyword and type for which
channel is created. We've created channel for integers,
which means that this channel can convey integer values
between goroutines. If you want to send something to
channel you use arrow pointing from value to a channel. In
the example ch <- 1 means "send 1 to the channel ch".
What is important is that sending to the channel blocks

execution of a goroutine. It is blocked as long as someone will receive from the channel from
another goroutine. Receiving from the channel is done also with the arrow but pointing from
channel, not to it. Receiving operation also blocks execution of goroutine until other
goroutine will send to it.

To illustrate it let's change order of channel operations
and try to run it. What will happen is that runtime will exit
with fatal error: all goroutines are asleep - deadlock!
This happens because when main goroutine encounters
receive operation it blocks forever. This is important
piece of information for us because now we know that
channels are not only used to convey values between
goroutines - they are crucial for synchronization between
code which concurrently runs in many goroutines.
This episode just scratched the surface of beautiful go concurrency model. Next time we will
explore another type of channels! Stay tuned!

Bathroom magazine with golang trivia, examples and patterns
Inspired by original Google’s “Testing on the Toilet”
Browse previous episodes: https://github.com/jedruniu/goot

https://github.com/jedruniu/goot

