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Golang wants you to be safe 
One of the most powerful features of go is it's concurrency model built around goroutines                             
and channels. Goroutine is a lightweight thread managed by the Go runtime. Channel enables                           
unidirectional communication between goroutines. If you want to know more about channels                       
and goroutines, stay tuned - in upcoming episodes we will take a closer look at them.  
 
One of the problems with concurrent programming is a data race. Data race is a situation                               
where a state of a variable is being changed concurrently, which effects in indefinite state of                               
the variable. As said before, golang wants you to be safe. Consider running your code with                               
-race flag. With this flag, golang builds a special instrumented binary, which warns you                         
about every encountered data race event. 
 
Let's have a look at an example, where a counter is increased 1000 times. Each write operation                                 
happens in a different goroutine. 
 
func main() { 

counter := 0 
wg := sync.WaitGroup{}    // Used only to wait for all goroutines to finish 
iterations := 1000 
wg.Add(iterations) 
for i := 0; i < iterations; i++ { 

go func() { 
counter++     // Concurrent write to the variable 
wg.Done() 

}() 
} 
wg.Wait() 
fmt.Println(counter) 

} 

 
The result of running the example (using go run -race main.go) prints detailed report that                          
states which goroutine, in which line of code causes data race. Another clue that the code                               
doesn't behave in a deterministic fashion is that each execution provides a different result. It's                             
worth to note that the production code we write is slightly more complex and spotting data                               
races may be quite a challenge. It is a good practice to run your tests with -race flag to spot                                      
early some of non-obvious errors on CI pipeline. 
 
In the next episode we will take a look at one of golangs proverb "Do not communicate by                                   
sharing memory; instead, share memory by communicating. Unfortunately here we've seen                     
communicating by sharing memory, which we will fix next time. 
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