_tmon the toilet

episode #6

Functions are first-class citizens

This property has some interesting consequences (we will show 4 of them). Thanks to it you can
accept function as an argument to the function and return a function from a function. Because of
this we can implement the decorator pattern. Here is one that logs the fact that function started

and finished.

func logged(f func(int) int) func(int) int {
return func(i int) int {
fmt.Println("start")
defer func() { fmt.Println("finish") }()
return f(i)

}
}

:i_K

.
#1 Accept function as o function argument,
#2 Return function from function

#3 Creote ononymous function,

Another characteristic of being first-class citizen is also visible in the code above. The function that
we return is anonymous function - it doesn't have a name and we don't care about it. Now, how

would you use such decorator?

func square (int) int {
fmt.Println("squaring:
return i * i

}
var loggedSquare = logged(square)

> 1)

func main () {

loggedSquare(7)
}
// start
// squaring: 7
// finish

#4 Assign function
to the variable,

Decorator works just as expected - we are able to do something before and after function call.

Example above seems irrelevant but it shows the mechanics of the pattern itself. Instead we could

time how long function was executing or implement a backoff mechanism. Also we observed that
<

function can be assigned to a variable.

Bathroom magozine with golang trivia, examples and patterns

Inspired by original Google's “Testing on the Toilet”

