
on the toilet
episode #5

Are there interfaces in go?
Sure, let’s look at one:

type Writer interface {

 Write(p []byte) (n int, err error)

}

This is ​Writer type from standard library (from io package). If you want to
implement such interface, you need to have struct with function ​Write defined on
this struct.

Let’s write some dummy implementation of this interface.

type DummyWriter struct {}

func (dw DummyWriter) Write (p []byte) (int, error) {

 return 0, nil

}

Here we have completely valid and extremely useless Writer implementation. I just
wanted to show you that in golang, interface implementation is implicit. In order
to satisfy interface, you need to have all of the method of the interface
implemented on a struct. One struct can implement as much interfaces as it
wants.

Why does it matter?
In golang there is a rule of thumb that ​in function you should accept interfaces
as parameters but return concrete implementations​. So for example if you want
to have a function that writes something to file, write a function that accepts
io.Writer ​interface ​instead of ​os.File ​struct (which is io.Writer implementation by
the way). Then if you want to test this function, you don’t need to give it real File,
you can give it any mock/dummy struct that implements Write.

Most important thing - naming interfaces.
interface with function ​Write ​ -> ​Writer
Interface with ​Write ​ and ​Close ​ -> ​WriteCloser
Interface with ​Read ​, ​Write ​ and ​Seek ​ -> ​ReadWriteSeeker
Interface with ​Egnyte ​ -> ​Egnyter

Bathroom magazine with golang trivia, examples and patterns
Inspired by original Google’s “Testing on the Toilet”

