on the toilet
episode #5

Are there interfaces in go?
Sure, let's look at one:

type Writer interface {
Write(p []lbyte) (n int, err error)

}

This is Writer type from standard library (from io package). If you want to
implement such interface, you need to have struct with function write defined on
this struct.

Let's write some dummy implementation of this interface.

type DummyWriter struct {}

func (dw DummyWriter) Write (p [lbyte) (int, error) {
return 0, nil

Here we have completely valid and extremely useless Writer implementation. | just
wanted to show you that in golang, interface implementation is implicit. In order
to satisfy interface, you need to have all of the method of the interface
implemented on a struct. One struct can implement as much interfaces as it
wants.

Why does it matter?

In golang there is a rule of thumb that in function you should accept interfaces
as parameters but return concrete implementations. So for example if you want
to have a function that writes something to file, write a function that accepts
io.Writer interface instead of os.File struct (which is io.Writer implementation by
the way). Then if you want to test this function, you don’t need to give it real File,
you can give it any mock/dummy struct that implements Write.

Most important thing - naming interfaces.

interface with function Write -> Writer

Interface with Wwrite and Close -> WriteCloser
Interface with Read, Write and Seek -> ReadWriteSeeker
Interface with Egnyte -> Egnyter

Bathroom magozine with golang trivia, examples and patterns
Inspired by original Google's “Testing on the Toilet”




