
on the toilet
episode #4

Go is kind of object-oriented.

type HealthCheck struct {

 Interval time.Duration

 Healthy bool

}

func (hc HealthCheck) isHealthy() bool {

 return hc.Healthy

}

Above you have what you could call a class. It is a struct though with function
defined on it.

check := HealthCheck{

 Interval: 2*time.Second,

 Healthy: true,

}

check2 := &HealthCheck{1*time.Second, true}

Look-n-feel of the struct with function defined on it is class-like. You use it as
object just like in other languages. Above there are two definitions. First is more
verbose (it is called field:value initialization), in the second initialization is implicit
(value) initialization.

There is also ampersand (&) symbol. It means that check is of type HealthCheck
and check2 is of type “pointer to HealthCheck”. It matters a lot, but let’s not go
into the details today. I will just say that you don’t have to care about pointers
when accessing fields/functions:

check.isHealthy() // this gives true
check.Healthy // this also gives true
check2.isHealthy() // gives also true
check2.Healthy // surprise, surprise it gives true

By the way did you know that there is no private/public keywords in go? If
struct/function/variable starts with capital letter, you can use it outside of the
package, if not - you can’t! ¯_(ツ)_/¯

Bathroom magazine with golang trivia, examples and patterns
Inspired by original Google’s “Testing on the Toilet”

